metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.72D14, (C2xC28):38D4, (C23xC4):6D7, C28:7D4:51C2, (C23xC28):10C2, C28.425(C2xD4), D14:C4:43C22, (C2xD28):51C22, C22:5(C4oD28), C24:D7:15C2, C4:Dic7:65C22, C28.48D4:51C2, (C2xC14).289C24, (C2xC28).887C23, Dic7:C4:45C22, C7:7(C22.19C24), (C4xDic7):59C22, C14.135(C22xD4), (C22xC4).449D14, (C2xDic14):59C22, C23.235(C22xD7), C22.304(C23xD7), C23.23D14:33C2, C23.21D14:13C2, (C22xC28).530C22, (C22xC14).418C23, (C23xC14).111C22, (C2xDic7).151C23, (C22xD7).127C23, C23.D7.130C22, (C4xC7:D4):51C2, (C2xC4xD7):54C22, (C2xC4oD28):14C2, (C2xC4):17(C7:D4), C2.72(C2xC4oD28), C14.64(C2xC4oD4), C4.145(C2xC7:D4), (C2xC14):12(C4oD4), C2.8(C22xC7:D4), (C2xC14).575(C2xD4), C22.35(C2xC7:D4), (C2xC4).740(C22xD7), (C2xC7:D4).137C22, SmallGroup(448,1244)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.72D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=f2=d, ab=ba, ac=ca, faf-1=ad=da, ae=ea, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e13 >
Subgroups: 1284 in 330 conjugacy classes, 119 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C23, D7, C14, C14, C14, C42, C22:C4, C4:C4, C22xC4, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic7, C28, C28, D14, C2xC14, C2xC14, C2xC14, C42:C2, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C23xC4, C2xC4oD4, Dic14, C4xD7, D28, C2xDic7, C7:D4, C2xC28, C2xC28, C2xC28, C22xD7, C22xC14, C22xC14, C22xC14, C22.19C24, C4xDic7, Dic7:C4, C4:Dic7, D14:C4, C23.D7, C2xDic14, C2xC4xD7, C2xD28, C4oD28, C2xC7:D4, C22xC28, C22xC28, C22xC28, C23xC14, C28.48D4, C23.21D14, C4xC7:D4, C23.23D14, C28:7D4, C24:D7, C2xC4oD28, C23xC28, C24.72D14
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, C4oD4, C24, D14, C22xD4, C2xC4oD4, C7:D4, C22xD7, C22.19C24, C4oD28, C2xC7:D4, C23xD7, C2xC4oD28, C22xC7:D4, C24.72D14
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(57 104)(58 105)(59 106)(60 107)(61 108)(62 109)(63 110)(64 111)(65 112)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)(78 97)(79 98)(80 99)(81 100)(82 101)(83 102)(84 103)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 43)(57 104)(58 105)(59 106)(60 107)(61 108)(62 109)(63 110)(64 111)(65 112)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)(78 97)(79 98)(80 99)(81 100)(82 101)(83 102)(84 103)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 75 15 61)(2 60 16 74)(3 73 17 59)(4 58 18 72)(5 71 19 57)(6 84 20 70)(7 69 21 83)(8 82 22 68)(9 67 23 81)(10 80 24 66)(11 65 25 79)(12 78 26 64)(13 63 27 77)(14 76 28 62)(29 95 43 109)(30 108 44 94)(31 93 45 107)(32 106 46 92)(33 91 47 105)(34 104 48 90)(35 89 49 103)(36 102 50 88)(37 87 51 101)(38 100 52 86)(39 85 53 99)(40 98 54 112)(41 111 55 97)(42 96 56 110)
G:=sub<Sym(112)| (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (57,104)(58,105)(59,106)(60,107)(61,108)(62,109)(63,110)(64,111)(65,112)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(57,104)(58,105)(59,106)(60,107)(61,108)(62,109)(63,110)(64,111)(65,112)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,15,61)(2,60,16,74)(3,73,17,59)(4,58,18,72)(5,71,19,57)(6,84,20,70)(7,69,21,83)(8,82,22,68)(9,67,23,81)(10,80,24,66)(11,65,25,79)(12,78,26,64)(13,63,27,77)(14,76,28,62)(29,95,43,109)(30,108,44,94)(31,93,45,107)(32,106,46,92)(33,91,47,105)(34,104,48,90)(35,89,49,103)(36,102,50,88)(37,87,51,101)(38,100,52,86)(39,85,53,99)(40,98,54,112)(41,111,55,97)(42,96,56,110)>;
G:=Group( (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (57,104)(58,105)(59,106)(60,107)(61,108)(62,109)(63,110)(64,111)(65,112)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43)(57,104)(58,105)(59,106)(60,107)(61,108)(62,109)(63,110)(64,111)(65,112)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,15,61)(2,60,16,74)(3,73,17,59)(4,58,18,72)(5,71,19,57)(6,84,20,70)(7,69,21,83)(8,82,22,68)(9,67,23,81)(10,80,24,66)(11,65,25,79)(12,78,26,64)(13,63,27,77)(14,76,28,62)(29,95,43,109)(30,108,44,94)(31,93,45,107)(32,106,46,92)(33,91,47,105)(34,104,48,90)(35,89,49,103)(36,102,50,88)(37,87,51,101)(38,100,52,86)(39,85,53,99)(40,98,54,112)(41,111,55,97)(42,96,56,110) );
G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(57,104),(58,105),(59,106),(60,107),(61,108),(62,109),(63,110),(64,111),(65,112),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96),(78,97),(79,98),(80,99),(81,100),(82,101),(83,102),(84,103)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,43),(57,104),(58,105),(59,106),(60,107),(61,108),(62,109),(63,110),(64,111),(65,112),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96),(78,97),(79,98),(80,99),(81,100),(82,101),(83,102),(84,103)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,75,15,61),(2,60,16,74),(3,73,17,59),(4,58,18,72),(5,71,19,57),(6,84,20,70),(7,69,21,83),(8,82,22,68),(9,67,23,81),(10,80,24,66),(11,65,25,79),(12,78,26,64),(13,63,27,77),(14,76,28,62),(29,95,43,109),(30,108,44,94),(31,93,45,107),(32,106,46,92),(33,91,47,105),(34,104,48,90),(35,89,49,103),(36,102,50,88),(37,87,51,101),(38,100,52,86),(39,85,53,99),(40,98,54,112),(41,111,55,97),(42,96,56,110)]])
124 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4P | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 28 | 28 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
124 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D7 | C4oD4 | D14 | D14 | C7:D4 | C4oD28 |
kernel | C24.72D14 | C28.48D4 | C23.21D14 | C4xC7:D4 | C23.23D14 | C28:7D4 | C24:D7 | C2xC4oD28 | C23xC28 | C2xC28 | C23xC4 | C2xC14 | C22xC4 | C24 | C2xC4 | C22 |
# reps | 1 | 2 | 1 | 4 | 2 | 2 | 2 | 1 | 1 | 4 | 3 | 8 | 18 | 3 | 24 | 48 |
Matrix representation of C24.72D14 ►in GL4(F29) generated by
28 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 28 | 0 |
0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
26 | 0 | 0 | 0 |
0 | 10 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 13 |
0 | 10 | 0 | 0 |
26 | 0 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 9 | 0 |
G:=sub<GL(4,GF(29))| [28,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,28,0,0,0,0,1,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[26,0,0,0,0,10,0,0,0,0,9,0,0,0,0,13],[0,26,0,0,10,0,0,0,0,0,0,9,0,0,13,0] >;
C24.72D14 in GAP, Magma, Sage, TeX
C_2^4._{72}D_{14}
% in TeX
G:=Group("C2^4.72D14");
// GroupNames label
G:=SmallGroup(448,1244);
// by ID
G=gap.SmallGroup(448,1244);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,758,675,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=f^2=d,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^13>;
// generators/relations